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Abstract
A methodology is presented, which reduces the number of site-occupancy
configurations to be calculated when modelling site disorder in solids, by taking
advantage of the crystal symmetry of the lattice. Within this approach, two
configurations are considered equivalent when they are related by an isometric
operation; a trial list of possible isometric transformations is provided by the
group of symmetry operators in the parent structure, which is used to generate
all configurations via atomic substitutions. We have adapted the equations for
configurational statistics to operate in the reduced configurational space of the
independent configurations. Each configuration in this space is characterized
by its reduced energy, which includes not only its energy but also a contribution
from its degeneracy in the complete configurational space, via an entropic term.
The new computer program SOD (site-occupancy disorder) is presented, which
performs this analysis in systems with arbitrary symmetry and any size of
supercell. As a case study we use the distribution of cations in iron antimony
oxide FeSbO4, where we also introduce some general considerations for the
modelling of site-occupancy disorder in paramagnetic systems.

1. Introduction

Site-occupancy disorder, defined as the non-periodic occupation of lattice sites in a crystal
structure, is a ubiquitous phenomenon in solid-state chemistry. Relevant examples are metallic
alloys, mineral solid solutions, and synthetic non-stoichiometric compounds. The experimental
investigation of these materials using diffraction techniques or other methods developed for the
study of periodic crystals only provides averaged information of their properties, thus mapping
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the complexity of long-range patterns of site-occupancy configurations into a small crystal unit
cell with ill-defined (fractional) site occupancies.

Computer-modelling techniques are well suited to make valuable contributions to the
investigation of site-occupancy disorder in solids, by evaluating the relative stabilities of
configurations using simple energetic criteria (e.g. [1–10]). Several computational strategies
have been employed to this end, which usually involve the evaluation of the energies of different
site-occupancy configurations in a supercell of the structure. One important limitation of the
supercell approach is the computational cost. This problem is two-fold: first, the evaluation
and minimization of the energy of a large supercell can be very expensive, even if interatomic
potential methods rather than quantum-mechanical techniques are employed; and second,
the number of possible configurations increases dramatically with the supercell size, quickly
reaching very high values. The combination of these two limitations makes it very difficult to
perform a direct study of the complete configurational ensemble for any supercell other than a
very small, usually insufficient, simulation cell.

In order to deal with the first of the above-mentioned problems, one common strategy
is to use simple parametric interaction models containing energy contributions for each
pair of atom types in nearest-neighbour (NN) or next-nearest-neighbour (NNN) sites. The
parameters of these interaction models are fitted to reproduce the energies obtained using
quantum-mechanical or interatomic potential methods in small supercells. These simple
interaction models perform remarkably well in some systems like metallic alloys, where the
relevant interactions for site occupation are essentially short-range. They can also be applied
successfully to the study of covalent solid solutions and of same-charge cation or anion
distributions in ionic systems. However, when the site-occupation configurations differ in
their charge distributions, as is the case in many ionic solid solutions, the effect of the long-
range electrostatic interactions cannot simply be incorporated into NN and NNN potentials,
and should be evaluated explicitly.

The second problem, relating to the number of configurations, is even more difficult
to solve. One approach used by various authors (e.g. [8–10]), has been to sample the
configurational space using the Monte Carlo method, where configurations are randomly
generated, before being accepted or rejected in the ensemble according to the Metropolis
algorithm [11]. In this way, it is possible to obtain a representative set of configurations, which
can be considerably smaller than the complete configurational space.

An alternative approach to reduce the number of configurations is to take advantage of
the system symmetry. Many configurations are symmetry related and therefore identical, so it
is possible to limit the configurational space to the symmetrically inequivalent configurations
only. This is the approach that we have used in recent studies [12, 13], and the methodology to
implement this idea is fully described in the present paper. Todorov et al [10] have discussed
an alternative methodology, which is based on the determination and comparison of the space
group of the different structures. However, as the authors note, the fact that two configurations
have the same space group does not imply that they will have the same energy. Having the
same space group is a necessary but not a sufficient condition for two configurations to be
symmetrically equivalent.

In this paper we present the conditions that are both necessary and sufficient to obtain the
symmetry equivalence of two configurations, and its implementation in a computer program
that identifies the different site-occupancy configurations for any structure with arbitrary super-
cell size, space group or composition. We also demonstrate the calculation of the thermody-
namic properties of independent configurations in the reduced space. To illustrate our approach,
we consider the case of the distribution of cations in iron antimony oxide FeSbO4, where we
discuss some aspects of the modelling of site-occupancy disorder in paramagnetic systems.
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Figure 1. Illustration of identical configurations related by an isometric transformation.

(This figure is in colour only in the electronic version)

2. Theoretical background and implementation

2.1. Equivalence between configurations

The criterion of equivalence between two configurations is based on the concept of isometric
transformations [14], which are geometric operations (e.g. translations, rotations, reflections)
that keep constant all the distances and angles within the transformed object. Thus, two
configurations are considered equivalent if there is one isometric transformation that converts
one into the other (figure 1).

In order to find the isometric transformation linking two equivalent configurations, it is
possible to make use of the symmetry of the crystal. Symmetry operations in a crystal are
defined as those isometric transformations which convert the structure into itself [14]. Although
the isometric transformation that converts one configuration into the other is not a symmetry
operator of any of the two equivalent structures, it has to be a symmetry operator of the
parent structure, that is, the structure from which all configurations can be derived by effecting
certain site substitutions. Therefore, in order to find out whether two given configurations are
equivalent, it is sufficient to check if any of the symmetry operators of the parent structure
converts one of the configurations into the other.

The implicit assumption here is that after relaxation each configuration will keep the same
symmetry operators of the parent structure, except for the symmetry breaking caused by the
substitution itself. In the case of dilute defects, the parent structure will clearly be the non-
defective structure, but in general it is not possible to define the parent structure in terms of
homogeneous occupation of the substitution sites in one of the end-member structures, which
may exist only with a different crystal structure. The best definition of the parent structure is
in terms of the experimental averaged crystal lattice, provided that this is known beforehand.
For example, when studying the cation distribution in FeSbO4 (see section 3 and [12, 13]), we
cannot take the pure oxides as reference structures, as they crystallize in completely different
lattice types. In this case we must use the experimental crystal structure, which for FeSbO4 is
a rutile-like structure [15].
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We note that in the present methodology, we focus on the symmetry of the parent structure
rather than the approach followed by Todorov et al [10], which considers the symmetry group
of each particular configuration. The equivalence criterion presented here is more restrictive:
if two configurations are related by an isometric transformation, then they have the same
symmetry group, but the opposite is not necessarily true.

2.2. Symmetry operators in an arbitrary supercell

We now consider the general problem of identifying all the symmetry operators in an arbitrary
supercell, which form the pool of isometric transformations that will be explored to check
equivalencies between configurations. Although the symmetry of any crystal structure can be
described by one of the 230 crystallographic space groups, all the symmetry information of the
supercell is not contained in the space group description, as translations are not included once
a supercell is created. However, if we know the symmetry operators in the space group of the
unit cell, and the number of repetitions (N1, N2, N3) of the unit cell in each direction which
define the supercell N1 × N2 × N3, it is possible to find the set of all the symmetry operators
of the supercell.

We will use here the matrix–vector representation of the operators: for each operator ̂O of

the space group there is a matrix O and a vector o such that the action of the operator on the
fractional coordinates of an arbitrary point is

̂Ox̄ = O · x̄ + ō =
( O11 O12 O13

O21 O22 O23

O31 O32 O33

) ( x1

x2

x3

)

+
( o1

o2

o3

)

. (1)

If the supercell shape is consistent with the space group of the structure (N1 = N2 = N3 for
cubic space groups, N1 = N2 for tetragonal space groups, etc), then the supercell will have the
same symmetry elements as the unit cell. In the matrix–vector representation, the components
of the matrix will remain the same, but the components of the vector must be rescaled to reflect
the change in the length of the cell vectors:

o′
i = oi

Ni
, i = 1, 2, 3. (2)

On the other hand, if the supercell shape is not consistent with the space group, some
operators of the original group should be excluded from the supercell group. The rule is that
if Ni �= N j , all operators containing matrix elements Oi j �= 0 must be excluded, as these
operators ‘mix’ the two directions that are no longer equivalent because of the supercell shape.

Not only the space-group symmetry elements, but also the internal translational symmetry,
contribute to the symmetry of the supercell. For the internal translations ̂T the operator matrix
is simply a unity matrix:

T = I =
( 1 0 0

0 1 0
0 0 1

)

(3)

and the operator vectors are

t̄ =
( n1/N1

n2/N2

n3/N3

)

(4)

where ni = 0, . . . , Ni − 1 (there are N1 × N2 × N3 translational operators). We also have
to include all the combinations between the symmetry elements of the unit cell space group
and these internal translation operations. Therefore, if the supercell shape is consistent with
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the symmetry of the unit cell, the number of symmetry operators in the supercell (NO) is
N1 × N2 × N3 × NSG, where NSG is the number of operators in the unit cell space group.
If the supercell is not consistent with the unit cell symmetry, the number of operators in the
supercell will be smaller than that.

Having obtained the group of symmetry operators of the supercell, we can find all the
equivalent configurations within the complete space of N configurations, thus identifying M
independent configurations, where in general M � N . As a result we can then restrict our
classical or quantum-mechanical calculations to this set of M independent configurations,
which from now on we will call reduced configurational space. In general, the larger the
number of symmetry operators NO, the smaller the proportion of independent configurations,
although the number of configurations is not necessarily reduced by a factor NO as in many
cases an operator converts a configuration into itself (for example, a configuration that is
symmetrically arranged at both sides of a plane does not change under the action of a
reflection by that plane). Therefore, the degeneracy �m of each independent configuration
m (m = 1, M), which is the number of configurations in the complete space that are equivalent
to the independent configuration m, depends on the symmetry of the configuration.

2.3. Implementation in the SOD program

We have implemented the above ideas in a computer program, SOD (Site-Occupancy Disorder),
which was written in the Fortran90 language. The algorithm used in the program to obtain the
list of independent configurations, I , from the list of all the configurations, A, is represented
in the flow charts of figure 2. A loop is performed through all the configurations in the
list A (see figure 2(a)). The list I , which initially contains just the first configuration, is
populated at each step with a particular configuration from A if the configuration is found
to be independent of those already included in I . In order to check this independence, we
use an auxiliary list E , which at each step contains the independent configurations already
found, plus all their equivalent configurations. Finally, the list E will contain the complete set
of configurations. The calculation of all the configurations that are equivalent to a particular
independent configuration is performed by a secondary loop, which is explained in figure 2(b).

The program can therefore determine whether a particular configuration in A is a new
independent one, just by checking whether the configuration is included in E . If this is not the
case, the configuration is added to I , and together with all its equivalent configurations, also
to E . Then the number of equivalent configurations is counted, which is the degeneracy of the
independent configuration. The same procedure is repeated for the next configuration, until E
contains all the configurations (E = A). At the end of the process, the list I will contain only
the non-equivalent configurations.

2.4. Configurational statistics

We now show how to obtain the thermodynamic properties associated with configurational
disorder from the results of the calculations in the reduced configurational space. We
first summarize the equations for configurational statistics in the complete space of all
configurations. If all site-occupancy configurations are in thermodynamic equilibrium at
temperature T , each configuration n in the complete space (n = 1, . . . , N) can be assigned
an occurrence probability:

Pn = 1

Z
exp(−En/kB T ), (5)
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(a) (b)

Figure 2. Flow charts explaining the operation of the SOD program. (a) Main part of the code,
which identifies the list of independent configurations. Cursive capital letters represent groups of
configurations. A is the group of all configurations, I the group of independent configurations and
E the group of equivalent configurations, which initially is formed by the first configuration in A,
{C1}, plus the group of all its equivalent configurations, S(C1), which are all the configurations
obtained by applying each of the symmetry operations to that configuration. n and o are integer
indices, n running from 1 to Nc, the total number of configurations, while o runs from 1 to No,
the total number of symmetry operations. (b) Secondary part of the code, which is where the
list of configurations equivalent to Cn , S(Cn), is calculated, by multiplying the vector associated
with Cn by Ôo, the symmetry operator matrix. If Cn’ is not included in the group of equivalent
configurations, S(Cn), it is then added, so that when the last symmetry operator, Ô No, is applied,
S(Cn) includes all the equivalent configurations, without repetitions.

where kB = 8.6173 × 10−5 eV K−1 is Boltzmann’s constant, En is the energy of that
configuration and

Z =
N

∑

n=1

exp(−En/kB T ) (6)

is the partition function. Now, we can calculate the energy of the system in configurational
equilibrium as the average:

E =
N

∑

n=1

Pn En, (7)
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while the configurational free energy can be obtained from the partition function as

F = −kB T ln Z (8)

and therefore the configurational entropy is simply

S = E − F

T
. (9)

In the case of a perfectly ordered system, in which one non-degenerate configuration has a
much lower energy than the rest, both the energy and the free energy of the system are identical
to the energy of that configuration, and the configurational entropy is zero. Alternatively, for
a totally disordered system of N configurations, all with identical energies, the configurational
entropy reaches a maximum value:

Smax = kB ln N. (10)

Generally, however, the configurational entropy calculated by equation (9) can take any
value between zero and Smax, depending on the temperature and on the energy distribution of
the configurations.

It should be noted that in the above equations all temperature effects have been excluded in
the calculation of the energies and partition function; in particular the vibrational contribution
to the stability of the configurations has been ignored. It is possible to calculate this vibrational
entropy term, Svib, by standard lattice dynamical procedures [16], and thus to replace the energy,
En , of each configuration by its corresponding Helmholtz free energy term: Fvib

n = En −T Svib.
In this case, the entropy calculated with equation (9) will contain both configurational and
vibrational contributions. Analogously, we can consider the effect of finite pressures and
volume differences between configurations, by adding the term pVn to the energy of each
configuration, that is, by using the Gibbs free energy instead of the Helmholtz free energy (and
average enthalpies instead of average energies). This complete formulation has been used and
explained in detail by Allan et al in their studies of MgO/MnO [10] solid solutions.

Now we can translate the above equations to the reduced configurational space. The
probability P̃m of an independent configuration m (m = 1, . . . , M) with degeneracy �m

occurring is

P̃m = 1

Z
�m exp(−Em/kB T ) = 1

Z
exp(−Ẽm/kB T ) (11)

where we have introduced the reduced energy:

Ẽm = Em − T Sm (12)

which can be seen as a temperature-dependent free energy associated with the degeneracy
entropy:3

Sm = kB T ln �m . (13)

The introduction of this degeneracy entropy allows us to take into account the effect of the
configuration degeneracy and to make direct comparisons of independent configurations via
the reduced energies, which comprise both the energetic and the degeneracy information. In
particular, from the previous equations it is clear that, if two independent configurations have
the same energy, the one with higher degeneracy will have higher degeneracy entropy, which

3 In [12, 13] the term configurational entropy was used to denote what we call here degeneracy entropy, which is
a property defined for each individual configuration. This was misleading, as the term configurational entropy has
been used traditionally to denote the entropic contribution from disorder to the stability of a system, and refers to the
whole system in configurational equilibrium, rather than to one particular configuration. In this paper we employ the
traditional terminology.
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Figure 3. The crystal structure of FeSbO4, showing the octahedral coordination of the cations.

in turn lowers its reduced energy Ẽm , resulting in a higher probability of appearance for that
configuration.

The energy and the partition function can therefore be calculated in the reduced space as

E =
M

∑

m=1

P̃m Em (14)

and

Z =
M

∑

m=1

exp(−Ẽm/kB T ) (15)

which allows the calculation of the configurational entropy via equation (9).
Finally, it is worth noting that, in the equations above, T is the temperature at which

the configurations are in equilibrium. However, cation exchange is often inhibited by high
activation barriers, and thermodynamical equilibrium, except at high temperatures, should not
be expected. Farber et al [17], for example, have shown that, in the perovskite solid solution
Pb(Mg1/3Nb2/3)O3–Pb(Sc1/2Nb1/2)O3, the distribution of cations is thermodynamically
controlled only above ∼1330 K. This threshold temperature, whenever known, should be used
to calculate the site-occupancy distributions for any temperature below that value.

3. A practical example: cation disorder in FeSbO4

3.1. Structure description and calculation details

In this section we present the results of the application of the above methodology to the study of
the cation distribution in the iron (III) antimony (V) oxide FeSbO4. This structure is described
in terms of a rutile-like framework with Fe and Sb cations distributed in the octahedral sites
within the oxygen lattice (figure 3). Most experimental studies have concluded that the cation
distribution is completely disordered (see [15] for a review), although some diffraction data
have also been interpreted in terms of partial cationic ordering in a supercell with triple c
parameter compared to common rutile [18, 19]. However, a recent computer-modelling study
of the cation distribution found that Fe and Sb cations show a clear preference to alternate
along the c-axis of the crystal, while these chains of alternating cations connect laterally
with significant disorder in the a–b plane, which prevents three-dimensional long-range
ordering [13]. We will report here the results of a more rigorous study of the cation distribution
in this material, which will allow us to evaluate the validity of previous assumptions and
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Table 1. Number of independent configurations for a series of supercells of FeSbO4.

Supercell

Number of
symmetry
operations No

Total number of
configurations N

Number of
independent
configurations M

1 × 1 × 1 16 2 1
1 × 1 × 2 32 6 2
1 × 1 × 3 48 20 3
1 × 1 × 4 64 70 8
2 × 2 × 1 64 70 7
2 × 2 × 2 128 12 870 180

approximations, and we will use this example to illustrate the calculation of the thermodynamic
properties associated with configurational disorder according to the methodology introduced
above.

We used the SOD program to obtain all the different substitutions of Fe and Sb in the
cationic sites of different supercells of the rutile structure (table 1), before calculating the
energies for the configurations in the reduced space and performing the statistical analysis for
two supercells: 1 × 1 × 2 and 2 × 2 × 2.

All the energies were obtained using the density functional theory (DFT) as implemented
in the Vienna Ab Initio simulation program (VASP) [20–23], with a generalized-gradient
approximation (GGA) functional built from the Perdew and Zunger [24] local functional, with
the spin interpolation formula of Vosko et al [25] and the gradient corrections by Perdew et al
[26]. The interaction between the valence electrons and the core was described with the
projected augmented wave (PAW) method [27] in the implementation of Kresse and Jou-
bert [28]. The core levels, which were kept frozen during the calculations, consisted of orbitals
up to, and including, the 3p levels for Fe, the 4d levels for Sb and the 1s level for oxygen.

It is well known that the GGA approximation fails in the description of the electronic
properties of several transition metal compounds, as the electron self-interaction error becomes
significant for electrons in the well-localized d levels of the transition metals. In this work
we have therefore used the DFT + U methodology [29–32], which combines the DFT and a
Hubbard Hamiltonian to account for the intra-atomic Coulomb repulsion, which is not well
described in standard DFT. We use here the simple formulation by Liechtenstein et al [31] and
Dudarev et al [32], where a single parameter, Ueff, determines an orbital-dependent correction
to the DFT energy. Ueff is generally expressed as the difference between two parameters, the
Hubbard U , which is the Coulomb-energetic cost to place two electrons at the same site, and
an approximation of the Stoner exchange parameter I , which is almost constant at ∼1 eV [33].
The DFT+U correction alters the one-electron potential locally for the specified orbitals of the
metal atoms (e.g. Fe d orbitals), reducing the hybridization with the ligands (e.g. O atoms). The
Ueff = 0 case represents the DFT limit. Details of the implementation of the DFT + U method
in the VASP code can be found in the work by Rohrbach et al on transition metal sulfides. In a
previous paper [34] it was shown that the GGA + U methodology with Ueff = 4 eV provides
an adequate description of the electronic structure and the magnetic interactions in FeSbO4, in
contrast with pure GGA, which predicts too high a magnetic coupling, too narrow a band gap
and a pressure-induced Fe spin transition without experimental support. Previous studies have
also shown that GGA+U provides an adequate description of the defect chemistry and surface
properties of FeSbO4 [35, 36]. In the present work we use the same value Ueff = 4 eV in all
calculations.

We note that the calculation details here are different from those in our previous study [13]
of the cation distribution in FeSbO4, where ultrasoft pseudopotentials were employed and no
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(a) (b) (c)

(d) (e) (f)

Figure 4. Scheme of the non-magnetic (a), (d), ferromagnetic (b), (e) and antiferromagnetic
arrangements (c), (f) for configurations 1 (above) and 2 (below) for the 1 × 1 × 2 supercell. Solid
and open circles represent Fe and Sb cations respectively. Oxygen positions are omitted for clarity.

DFT + U correction was applied. More importantly, no spin polarization was included in this
previous work, as it was argued there that, at the temperatures at which the cationic ordering
occurs (a typical synthesis temperature is 1273 K), no magnetic order is present in the material,
and therefore the introduction of spin polarization with arbitrary ordering of the magnetic
moments would lead to artificial energy differences between configurations. Although it is
true that magnetic ordering is only present at very low temperatures (Néel temperature is ∼1 K
in FeSbO4) and therefore does not contribute to the evolution of the cationic distribution at
relevant temperatures, even so we will show here that non-spin polarized energies are not a
good representation of the paramagnetic phase. We will present a different method, based on
the use of a spin model Hamiltonian, to obtain the paramagnetic energies while retaining the
spin-polarized character of the calculations.

3.2. The 1 × 1 × 2 supercell

The 1 × 1 × 2 is the simplest supercell that can provide useful information about the cation
distribution. The extension along the c-axis is chosen, since c < a and the interactions between
cations of neighbouring cells are likely to be more important in that direction, especially as the
octahedra in the c-direction are edge-sharing rather than corner-sharing. Only two different
distributions of cations are possible in this supercell. The first configuration (figure 4(a))
corresponds simply to the repetition of the same ordered unit cell in the c-direction, whereas
the second (figure 4(b)) has the two Fe cations in one cell (bottom) and the two Sb cations in
the second cell (above).

Table 2 shows the results of the calculations of the 1 × 1 × 2 supercell, where we have
obtained spin-polarized solutions with the nearest-neighbour magnetic moments aligned both in
parallel directions (ferromagnetic phase, FM) and in antiparallel directions (antiferromagnetic
phase, AF). For both magnetic arrangements configuration 2 has a lower energy than
configuration 1, in agreement with our previous results without spin polarization [12, 13],
where it was concluded that the alternation of different cations along the c-axis is much more
favourable than having vertical chains of identical cations. The higher relative stability of cation
alternation is reinforced by the contribution from the degeneracy entropy, which is larger for
configuration 2 than for configuration 1.

10
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configuration 1

configuration 2

81.1%

18.9%

PM

87.7%

12.3%

AF

72.1%

27.9%

FM

99.4%

0.605%

NM

Figure 5. Probabilities of formation at T = 1273 K for configurations 1 and 2 in the 1 × 1 × 2
supercell, obtained from ferromagnetic (FM), antiferromagnetic (AF), non-magnetic (NM) and
paramagnetic (PM) energies.

Table 2. Summary of the calculations in the 1 × 1 × 2 supercell. The probabilities P are calculated
using the reduced paramagnetic energies (EPM − T Sd) at T = 1273 K.

Conf. 1 Conf. 2

EFM (eV) −77.564 −77.592
EAF (eV) −77.642 −77.782
EPM (eV) −77.603 −77.687
� 2 4
T Sd (eV) 0.076 0.152
P 0.189 0.811

It is important to note that the differences in energy between the two configurations in the
present spin-polarized calculations are smaller than in the calculations without spin polarization
(which was ∼0.5 eV) [12, 13]. In order to evaluate the effect of spin polarization in the
estimation of relative stabilities, we have calculated the Boltzmann probabilities of the two
configurations using non-magnetic (NM) and magnetic (FM and AF) energy differences, as
shown in figure 5. From a negligible 0.6% probability for configuration 1, when no magnetic
effects were considered, the probability increases to 12.3% and 27.9% when the system is
AF and FM respectively, which suggests that the effect of spin polarization can indeed be
significant. However, as we mentioned above, magnetic ordering is present only at very low
temperatures, and, therefore, no contributions from magnetic ordering should be included in the
calculation of the probabilities of the configurations, which does not mean that the NM energies
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are correct at high temperatures, when the system is paramagnetic, because in the paramagnetic
phase the iron ions are still spin-polarized. In order to exclude the contribution of magnetic
ordering to the energy, whilst keeping the spin-polarized nature of the solution representing
the high-temperature (paramagnetic) phase, we suggest following a simple procedure that has
already been used by other authors in different contexts. The calculation of FM and AF energies
allows us to obtain the magnetic coupling constants Jd and Jv , for diagonal (as in configuration
1) and vertical (as in configuration 2) Fe–Fe pairs, respectively, by mapping the calculated
results onto a Heisenberg spin model:

E = EPM − 2
∑

〈i, j〉
Ji j Si S j (16)

where S = ±5/2 in the case of high-spin Fe3+ ions, and the J values are the magnetic coupling
constants. The EPM value for each cation configuration is independent of the magnetic ordering
and can be regarded as the energy of that cation configuration in the paramagnetic (PM) phase,
as the contribution

∑

〈i, j〉 Ji j Si S j is zero for a system of completely disordered spins. Applying
the above equation to the magnetic states of configuration 1, we obtain

Jv = [EAF
1 − EFM

1 ]/8S2 = −18.2 K (17)

and

Jd = [EAF
2 − EFM

2 ]/16S2 = −22.1 K (18)

where EFM
1 and EAF

1 are the FM and AF energies of configuration 1, and EFM
2 and EAF

2 are
the FM and AF energies of configuration 2. The negative values indicate antiferromagnetic
coupling, in agreement with experimental evidence. The paramagnetic energies can now be
calculated as

EPM
1 = 1

2 (EAF
1 + EFM

1 ) = −77.603 eV (19)

EPM
2 = 1

2 (EAF
2 + EFM

2 ) = −77.687 eV (20)

which are the correct values to evaluate the probabilities of the configurations. The probability
of occurrence of configuration 1 in the 1 × 1 × 2 supercell then is 18.9%, which is between
the values calculated with the FM and the AF energies. We can see in figure 5 that the PM
probabilities are closer to the FM and AF values than to the NM results, which suggests that
the error introduced by excluding spin polarization is larger than the error contributed by the
magnetic ordering when FM or AF energies are used.

3.3. The 2 × 2 × 2 supercell

As we also need to study the arrangement of cations in directions perpendicular to the c-
axis, we have considered a 2 × 2 × 2 supercell. There are 12 870 cation combinations in
this supercell, although we clearly only need to calculate the independent configurations. We
have therefore used the SOD program to identify the 180 non-equivalent combinations. The
fractional coordinates of the ions were fully relaxed for each configuration, although the cell
parameters were kept fixed at the optimized value for configuration 2 in the 1×1×2 supercell.

Although the evaluation of paramagnetic energies in the 1 × 1 × 2 supercell involved the
calculation of both AF and FM energies, we note that for any larger supercell it is now possible
to calculate only the FM energies and then use the magnetic coupling constants to evaluate the
paramagnetic energies as

EPM = EFM + 2Nv JvS2 + 2Nd Jd S2 (21)

where Nv and Nd are the numbers of vertical and diagonal Fe–Fe pairs, respectively. The
resulting energies are shown in figure 6, as a function of, Nv . Out of the 180 different
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Figure 6. Correlation between the energy EPM and the number Nv of Fe–Fe pairs for the unrelaxed
configurations in the 2 × 2 × 2 supercell. The low-energy points at Nv = 0 correspond to
configurations with total Fe–Sb alternation along the c-direction.

configurations in this supercell, only 11 (those with Nv = 0 in) present complete alternation
of Fe and Sb along all columns in the c-direction. The results show that, as expected from
the 1 × 1 × 2 supercell, these configurations have the lowest energies. Moreover, as a general
trend, the smaller the number of vertical Fe–Fe pairs in any given cationic distribution, the more
stable the configuration (figure 6). However, there is one configuration with Nv = 8, which
corresponds to perfect ordering in each unit cell (equivalent to configuration 1 in the supercell
1 × 1 × 2), with an energy comparable to the energy of the configurations with Nv = 0. This is
a feature that was not found in our previous study of the cation distribution in FeSbO4, but its
effect on the cation ordering is negligible, as the degeneracy of this configuration (� = 2) is
much lower than the accumulated degeneracy of the configurations with Nv = 0 (

∑

� = 256).
The accumulated probability of the configurations with Nv = 0 calculated at the synthesis
temperature is in fact very close to 1, confirming that the alternation of cations along the c-axis
is favoured over other cation distributions. The small difference between the 11 configurations
with Nv = 0 indicates the presence of a large lateral disorder in the distribution. The present
results therefore suggest that the cation ordering in FeSbO4 is one-dimensional, in line with our
previous results.

3.4. Configurational entropies

Finally, we discuss the behaviour of the configurational entropy, which provides a quantitative
measure of the degree of ordering in the system. We used equation (9), and the paramagnetic
energies calculated for the 1 × 1 × 2 and 2 × 2 × 2 supercells to obtain the configurational
entropies for both supercells, as shown in table 3. At the two temperatures studied, 300 and
1273 K, the entropy of the 1 × 1 × 2 supercell is higher than for 2 × 2 × 2, because the
ground state has a degeneracy of four, while the total number of configurations is six. As a
result, the system has an entropy close to that of a totally disordered system, in which all the
configurations are equally accessible. The table also shows the maximum values of the entropy
Smax that the supercells would have if it they were completely disordered in that supercell, as
calculated from equation (10). Since it has a higher number of possible configurations, Smax is

13
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Table 3. Configurational entropies per formula unit (10−5 eV K−1) of FeSbO4 at 300 and 1273 K,
in comparison with the values expected in a completely disordered system of the same size (Smax)

and extrapolated to infinite cell size (S∞).

S(300 K) S(1273 K) Smax S∞

1 × 1 × 2 6.30 7.50 7.70 11.95
2 × 2 × 2 5.68 5.96 10.19 11.95

higher for the 2×2×2 supercell than for the 1×1×2 supercell. However, in the larger system
there is a small group of configurations, those with Nv = 0, which are much more stable than
the rest, and therefore the configurational entropy is lower.

The last column in table 3 shows S∞, which is the maximum value of the entropy (per
formula unit) for a given composition. This is the limit of the maximum entropy per formula
unit Smax when the number of unit cells in the supercell tends to infinity, and it can be obtained
from equation (9), where N is the number of configurations of a system with Ns sites, which
are occupied by Fe and Sb with equal probability:

N = N !
( Ns !

2 )( Ns !
2 )

. (22)

Using Stirling’s formula to approximate the logarithms of large numbers, it can be shown
that, when the number of sites tends to infinity, the entropy per site is

S∞
NS

= kB ln 2 = 5.975 × 10−5 eV K−1. (23)

In FeSbO4 there are two sites per formula unit, so the maximum entropy per formula unit
that the system can have is 11.95×10−5 eV K−1. The configurational entropy that we obtained
is considerably lower (5.96 × 10−5 eV K−1 in the 2 × 2 × 2 supercell), which is ∼50% of
S∞. This entropy reduction indicates the presence of ordering in the system, with two different
origins: the size limit of the employed supercell, which imposes a periodic ordering and is
responsible for a reduction of 15% of the entropy, and the real effect of cation ordering along
the c-axis within the supercell, which is responsible for 35% of the decrease in entropy.

4. Summary

We have presented a methodology for the study of site-occupancy disorder in periodic solids,
which makes use of the symmetry information of the system to reduce the size of the
configurational space. We have shown that two configurations are equivalent by symmetry
if they are related by an isometric operation, and that a trial list of isometric transformations is
provided by the group of symmetry operators in the parent structure, that is, the structure from
which all configurations are generated via atomic substitutions. We describe how to perform
statistics in the reduced space, in order to calculate configurational probabilities and entropies.
The equations are basically the same as in the full configurational space, provided that the
energy of each configuration is substituted by its reduced energy, which is obtained from the
configuration energy by subtracting an entropy-like contribution related to the degeneracy of
the independent configuration in the full configurational space.

We present a computer program, SOD (Site-Occupancy Disorder), in which we have
implemented an algorithm to obtain the list of non-equivalent configurations from a full list
of substitutional combinations. The SOD program can also perform other tasks to assist the
multi-configurational modelling, e.g. create input files for simulation programs such as GULP
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or VASP, and process the output from these codes to calculate probabilities and thermodynamic
variables. The program is available on request from the authors4.

The present methodology allows an exhaustive investigation of the configurational space in
disordered systems even for relatively large supercells, as usually the number of configurations
is reduced by some orders of magnitude, depending on the symmetry of the system. In
particular, these tools allow the use of ab initio techniques to study disorder in systems, which
previously were inaccessible to these computationally intensive methods. Moreover, if even
larger systems need to be studied, the reduction in the number of configurations achieved by this
methodology can also be helpful. For example, it is possible to combine symmetry arguments
with Monte Carlo sampling techniques, as it would be even more efficient to sample the reduced
configurational space by Monte Carlo techniques; work in this direction is now in progress.

We have illustrated the use of this methodology in the study of the cation distribution in
iron antimony oxide FeSbO4, using a more sophisticated level of calculation than in previous
studies. We have also described here how to eliminate the contribution of magnetic ordering to
the energy differences between configurations, while retaining the spin-polarized nature of the
calculations, by using a spin model Hamiltonian to estimate the energies in the paramagnetic
phase. The results confirm our previous findings showing that the alternation of Fe and Sb
along the c-direction of the FeSbO4 crystal is favoured compared to any deviations away from
this order. We suggest, therefore, that the crystal structure contains one-dimensional chains of
alternating Sb and Fe octahedra which share edges along the c-direction, although defective
Fe–Fe and Sb–Sb vertical pairs can occur. The lateral connection of these chains seems to
be significantly disordered, which could prevent the detection of cation ordering in diffraction
studies. As an indication of this partial disorder, the configurational entropy calculated for
FeSbO4 is around half the value expected for a completely disordered system with the same
composition, although a small fraction of this decrease arises from the finite size of the supercell
employed.
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